Part Number Hot Search : 
SZ6A47 E28F004 H11L1SM TB220F EMVE250A RTL8101 SV6550 MUR460BF
Product Description
Full Text Search
 

To Download LSH32 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LSH32
DEVICES INCORPORATED
32-bit Cascadable Barrel Shifter
LSH32
DEVICES INCORPORATED
32-bit Cascadable Barrel Shifter
DESCRIPTION
The LSH32 is a 32-bit high speed shifter designed for use in floating point normalization, word pack/ unpack, field extraction, and similar applications. It has 32 data inputs, and 16 output lines. Any shift configuration of the 32 inputs, including circular (barrel) shifting, left shifts with zero fill, and right shift with sign extend are possible. In addition, a built-in priority encoder is provided to aid floating point normalization. SHIFT ARRAY The 32 inputs to the LSH32 are applied to a 32-bit shift array. The 32 outputs of this array are multiplexed down to 16 lines for presentation at the device outputs. The array may be configured such that any contiguous 16-bit field (including wraparound of the 32 inputs) may be presented to the output pins under control of the shift code field (wrap mode). Alternatively, the wrap feature may be disabled, resulting in zero or sign bit fill, as appropriate (fill mode). The shift code control assignments and the resulting input to output mapping for the wrap mode are shown in Table 1. Essentially the LSH32 is configured as a left shift device. That is, a shift code of 000002 results in no shift of the input field. A code of 000012 provides an effective left shift of 1 position, etc. When viewed as a right shift, the shift code corresponds to the two's complement of the shift distance, i.e., a shift code of 111112 (-110) results in a right shift of one position, etc. When not in the wrap mode, the LSH32 fills bit positions for which there is no corresponding input bit. The fill value and the positions filled depend on the RIGHT/LEFT (R/L) direction pin. This pin is a don't care input when in wrap mode. For left shifts in fill mode, lower bits are filled with zero as shown in Table 2. For right shifts, however, the SIGN input is used as the fill value. Table 3 depicts the bits to be filled as a function of shift code for the right shift case. Note that the R/L input changes only the fill convention, and does not affect the definition of the shift code. In fill mode, as in wrap mode, the shift code input represents the number of shift positions directly for left shifts, but the two's complement of the shift code results in the equivalent right shift. However, for fill mode the R/L input can be viewed as the most
OE MS/LS
FEATURES
u 32-bit Input, 32-bit Output Multiplexed to 16 Lines u Full 0-31 Position Barrel Shift Capability u Integral Priority Encoder for 32-bit Floating Point Normalization u Sign-Magnitude or Two's Complement Mantissa Representation u 32-bit Linear Shifts with Sign or Zero Fill u Independent Priority Encoder Outputs for Block Floating Point u 68-pin PLCC, J-Lead
LSH32 BLOCK DIAGRAM
SIGN I31-I0
32
32:5 PRIORITY ENCODE
32
5
2:1
SI4-SI0
RIGHT/LEFT FILL/WRAP 16 NORM
32-bit BARREL SHIFT ARRAY
16
2:1 5 16
SO4-SO0
Y15-Y0
Special Arithmetic Functions
1
08/16/2000-LDS.32-Q
LSH32
DEVICES INCORPORATED
32-bit Cascadable Barrel Shifter
significant bit of a 6-bit two's complement shift code, comprised of R/L concatenated with the SI4-SI0 lines. Thus a positive shift code (R/L = 0) results in a left shift of 0-31 positions, and a negative code (R/L = 1) a right shift of up to 32 positions. The LSH32 can thus effectively select any contiguous 32-bit field out of a (sign extended and zero filled) 96-bit "input." OUTPUT MULTIPLEXER The shift array outputs are applied to a 2:1 multiplexer controlled by the MS/LS select line. This multiplexer makes available at the output pins either the most significant or least significant 16 outputs of the shift array. PRIORITY ENCODER The 32-bit input bus drives a priority encoder which is used to determine the first significant position for purposes of normalization. The priority encoder produces a five-bit code representing the location of the first non-zero bit in the input word. Code assignment is such that the priority encoder output represents the number of shift positions required to left align the first non-zero bit of the input word. Prior to the priority encoder, the input bits are individually exclusive OR'ed with the SIGN input. This allows normalization in floating point systems using two's complement mantissa representation. A negative value in two's complement representation will cause the exclusive OR gates to invert the input data to the encoder. As a result the leading significant digit will always be "1." This affects only the encoder inputs; the shift array always operates on the raw input data. The priority encoder function table is shown in Table 4.
TABLE 1. WRAP MODE SHIFT CODE DEFINITIONS
Shift Code 00000 00001 00010 00011
* * *
Y 31 I 31 I 30 I 29 I 28
* * *
Y 30 I 30 I 29 I 28 I 27
* * *
Y 29 I 29 I 28 I 27 I 26
* * *
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Y 16 I 16 I 15 I 14 I 13
* * *
Y 15 I 15 I 14 I 13 I 12
* * *
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Y2 I 2 I 1 I 0 I 31
* * *
Y1 I 1 I 0 I 31 I 30
* * *
Y0 I 0 I 31 I 30 I 29
* * *
01111 10000 10001 10010
* * *
I 16 I 15 I 14 I 13
* * *
I 15 I 14 I 13 I 12
* * *
I 14 I 13 I 12 I 11
* * *
I 1 I 0 I 31 I 30
* * *
I 0 I 31 I 30 I 29
* * *
I 19 I 18 I 17 I 16
* * *
I 18 I 17 I 16 I 15
* * *
I 17 I 16 I 15 I 14
* * *
11100 11101 11110 11111
I 3 I 2 I 1 I 0
I 2 I 1 I 0 I 31
I 1 I 0 I 31 I 30
I 20 I 19 I 18 I 17
I 19 I 18 I 17 I 16
I 6 I 5 I 4 I 3
I 5 I 4 I 3 I 2
I 4 I 3 I 2 I 1
TABLE 2.
Shift Code 00000 00001 00010 00011
* * *
FILL MODE SHIFT CODE DEFINITIONS -- LEFT SHIFT
Y 31 I 31 I 30 I 29 I 28
* * *
Y 30 I 30 I 29 I 28 I 27
* * *
Y 29 I 29 I 28 I 27 I 26
* * *
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Y 16 I 16 I 15 I 14 I 13
* * *
Y 15 I 15 I 14 I 13 I 12
* * *
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Y2 I 2 I 1 I 0 0
* * *
Y1 I 1 I 0 0 0
* * *
Y0 I 0 0 0 0
* * *
01111 10000 10001 10010
* * *
I 16 I 15 I 14 I 13
* * *
I 15 I 14 I 13 I 12
* * *
I 14 I 13 I 12 I 11
* * *
I 1 I 0 0 0
* * *
I 0 0 0 0
* * *
0 0 0 0
* * *
0 0 0 0
* * *
0 0 0 0
* * *
11100 11101 11110 11111
I 3 I 2 I 1 I 0
I 2 I 1 I 0 0
I 1 I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Special Arithmetic Functions
ffs2
08/16/2000-LDS.32-Q
LSH32
DEVICES INCORPORATED
32-bit Cascadable Barrel Shifter
NORMALIZE MULTIPLXER Y0 S I 31 I 30 I 29
* * *
TABLE 3.
Shift Code 00000 00001 00010 00011
* * *
FILL MODE SHIFT CODE DEFINITIONS -- RIGHT SHIFT
Y 31 S S S S
* * *
Y 30 S S S S
* * *
Y 29 S S S S
* * *
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Y 16 S S S S
* * *
Y 15 S S S S
* * *
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Y2 S S S I 31
* * *
Y1 S S I 31 I 30
* * *
01111 10000 10001 10010
* * *
S S S S
* * *
S S S S
* * *
S S S S
* * *
S S I 31 I 30
* * *
S I 31 I 30 I 29
* * *
I 19 I 18 I 17 I 16
* * *
I 18 I 17 I 16 I 15
* * *
I 17 I 16 I 15 I 14
* * *
The NORM input, when asserted results in the priority encoder output driving the internal shift code inputs directly. It is exactly equivalent to routing the SO4-SO0 outputs back to the SI4-SI0 inputs. The NORM input provides faster normalization of 32-bit data by avoiding the delay associated with routing the shift code off chip. When using the NORM function, the LSH32 should be placed in fill mode, with the R/L input low. APPLICATIONS EXAMPLES Normalization of mantissas up to 32 bits can be accomplished directly by a single LSH32. The NORM input is asserted, and fill mode and left shift are selected. The normalized mantissa is then available at the device output in two 16-bit segments, under the control of the output data multiplexer select, the MS/LS. If it is desirable to avoid the necessity of multiplexing output data in 16-bit segments, two LSH32 devices can be used in parallel. Both devices receive the same input word, with the MS/LS select line of one wired high, and the other low. Each device will then independently determine the shift distance required for normalization, and the full 32 bits of output data will be available simultaneously.
11100 11101 11110 11111
S S S S
S S S I 31
S S I 31 I 30
I 20 I 19 I 18 I 17
I 19 I 18 I 17 I 16
I 6 I 5 I 4 I 3
I 5 I 4 I 3 I 2
I 4 I 3 I 2 I 1
TABLE 4.
31 I 30 I
PRIORITY ENCODER FUNCTION TABLE
29 I *** *** *** *** *** *** *** *** *** *** *** *** *** *** 16 I 15 I *** *** *** *** *** *** *** *** *** *** *** *** *** *** 2 I 1 I 0 I
Shift Code 00000 00001 00010
* *
1 0 0
* *
X 1 0
* *
X X 1
* *
X X X
* *
X X X
* *
X X X
* *
X X X
* *
X X X
* *
0 0 0
* *
0 0 0
* *
0 0 0
* *
1 0 0
* *
X 1 0
* *
X X X
* *
X X X
* *
X X X
* *
01111 10000 10001
* *
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
X 1 0
11110 11111 11111
Special Arithmetic Functions
3
08/16/2000-LDS.32-Q
LSH32
DEVICES INCORPORATED
32-bit Cascadable Barrel Shifter
slices, including the first. The exception is that all SI4 lines are grounded, limiting the shift distance to 16 positions. The shift distance required for normalization is produced by the priority encoder in the most significant slice. The priority encoder will produce the shift code necessary to normalize the input word if the leading non-zero digit is found in the upper 16 bits. If this is the case, the number of shift positions necessary to accomplish normalization is placed on the SO4 -SO0 outputs for use by all slices, and the appropriate 0-15 bit shift is accomplished. If the upper 16 bits are all zero, then the maximum shift of 15 places is executed. Single clock normalization requiring shifts longer than 16 bits can be accomplished by a bank-select technique described below. SINGLE CYCLE LONG-WORD NORMALIZATION An extension of the above concept is a single clock normalization of long words (potentially requiring shifts of more than 15 places). The arrangement of LSH32s required is shown in Figure 1. Cascading of LSH32 units is accomplished by connecting the SI3- SI0 input lines of each unit to the SO3 - SO0 outputs of the most significant device in the row as before. Essen-
LONG-WORD NORMALIZATION (MULTIPLE CYCLES) Normalization of floating point mantissas longer than 32 bits can be accomplished by cascading LSH32 units. When cascading for normalization, the device inputs are overlapped such that each device lower in priority than the first shares 16 inputs with its more significant neighbor. Fill mode and left shift are selected, however, internal normalization (NORM) is not used. The most significant result half of each device is enabled to the output. The shift out (SO4-SO0) lines of the most significant slice are connected to the shift in lines of all
FIGURE 1. SINGLE CYCLE LONG-WORD NORMALIZATION USING LSH32S
I63-I48 MSBs 4 LSH32 SI3-0 SO4-0 OE I47-I32 I31-I16 5 4 LSH32 SI3-0 OE I15-I0 4 LSH32 SI3-0 OE 0 4 LSH32 SI3-0 OE SI4 I47-I32 I31-I16 I15-I0 0
PRIORITY ENCODE 2:4 DECODE 4
LSH32 SI3-0 SO4-0 OE I31-I16 I15-I0
5
4
LSH32 SI3-0 OE 0
4
LSH32 SI3-0 OE SI4
4
LSH32 SI3-0 SO4-0 OE I16-I0 0
5
4
LSH32 SI3-0 OE SI4
4
LSH32 SO4-0 SI3-0 OE SI4
5
Y63-Y48
Y47-Y32
Y31-Y16
Y15-Y0
Special Arithmetic Functions
ffs4
08/16/2000-LDS.32-Q
LSH32
DEVICES INCORPORATED
32-bit Cascadable Barrel Shifter
The number of shift positions can be determined simply by concatenation of the SO3-SO0 outputs of the most significant slice in the selected row with the encoded Output Enable-bits determining the row number. Note that lower rows need not be fully populated. This is because they represent left shifts in multiples of 16 positions, and the lower bits of the output word will be zero filled. In order to accomplish this zero fill, the least significant device in each row is always enabled, and the row select is instead connected to the SI4 input. This will force the shift length of the least significant device to a value greater than 15 whenever the row containing that device is not selected. This results in zero fill being accomplished by the equivalently positioned slice in a higher bank, as shown in the diagram. BLOCK FLOATING POINT With a small amount of external logic, block floating point operations are easily accomplished by the LSH32. Data resulting from a vector operation are applied to the LSH32 with the NORM-input deasserted. The SO4- SO0 outputs fill then represent the normalization shift distance for each vector element in turn. By use of an external latch and comparator, the maximum shift distance encountered across all elements in the vector is saved for use in the next block operation (or block normalization). During this subsequent pass through the data, the shift code saved from the previous pass is applied uniformly across all elements of the vector. Since the LSH32 is not used in the internal normalize mode, this operation can be pipelined, thereby obtaining the desired shift distance for the next pass while simultaneously applying the normalization required from the previous pass.
tially the LSH32s are arranged in multiple rows or banks such that the inputs to successive rows are leftshifted by 16 positions. The outputs of each row are multiplexed onto a three-state bus. The normalization problem then reduces to selecting from among the several banks that one which has the first non-zero bit of the input value among its 16 most significant positions. If the most significant one in the input file was within the upper 16 locations of a given bank, the SO4 output of the most significant slice in that bank will be low. Single clock normalization can thus be accomplished simply by enabling onto the three-state output bus the highest priority bank in which this condition is met. In this way the input word will be normalized regardless of the number of shift positions required to accomplish this.
Special Arithmetic Functions
5
08/16/2000-LDS.32-Q
LSH32
DEVICES INCORPORATED
32-bit Cascadable Barrel Shifter
MAXIMUM RATINGS Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature ........................................................................................................... -65C to +150C Operating ambient temperature ........................................................................................... -55C to +125C VCC supply voltage with respect to ground ............................................................................ -0.5 V to +7.0 V Input signal with respect to ground ........................................................................................ -3.0 V to +7.0 V Signal applied to high impedance output ............................................................................... -3.0 V to +7.0 V Output current into low outputs ............................................................................................................. 25 mA Latchup current ............................................................................................................................... > 400 mA
OPERATING CONDITIONS To meet specified electrical and switching characteristics
Mode Active Operation, Commercial Active Operation, Military Temperature Range (Ambient) 0C to +70C -55C to +125C Supply Voltage 4.75 V VCC 5.25 V 4.50 V VCC 5.50 V
ELECTRICAL CHARACTERISTICS Over Operating Conditions (Note 4)
Symbol VOH VOL VIH VIL IIX IOZ ICC1 ICC2 Parameter Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Input Current Output Leakage Current VCC Current, Dynamic VCC Current, Quiescent
(Note 3)
Test Condition VCC = Min., IOH = -2.0 mA VCC = Min., IOL = 8.0 mA
Min 2.4
Typ
Max
Unit V
0.4 2.0 0.0 VCC 0.8 20 20 10 30 1.5
V V V A A mA mA
Ground VIN VCC (Note 12) Ground VOUT VCC (Note 12)
(Notes 5, 6) (Note 7)
Special Arithmetic Functions
ffs6
08/16/2000-LDS.32-Q
432109876543210987654321 432109876543210987654321 432109876543210987654321 432109876543210987654321
*DISCONTINUED SPEED GRADE
Symbol Symbol
4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321 4321098765432121098765432109876543210987654321
Min
6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 6543210987654321 543210987654321 6543210987654321 6543210987654321 6
Min
DEVICES INCORPORATED
SWITCHING WAVEFORMS
MILITARY OPERATING RANGE (-55C to +125C) Notes 9, 10 (ns)
COMMERCIAL OPERATING RANGE (0C to +70C) Notes 9, 10 (ns)
SWITCHING CHARACTERISTICS
tENA
tDIS
tMSY
tSIY
tISO
tIYN
tIY
tENA
tDIS
tMSY
tSIY
tISO
tIYN
tIY
SI4-SI0 RIGHT/LEFT
SO4-SO0
MS/LS
Y31-Y0
Y31-Y0
I31-I0 SIGN
Parameter
Parameter
Three-State Output Enable Delay (Note 11)
Three-State Output Disable Delay (Note 11)
MS/LS Select to Y Outputs
SI, RIGHT/LEFT to Y Outputs
I, SIGN Inputs to SO Outputs
I, SIGN Inputs to Y Outputs, Normalize Mode
I, SIGN Inputs to Y Outputs
Three-State Output Enable Delay (Note 11)
Three-State Output Disable Delay (Note 11)
MS/LS Select to Y Outputs
SI, RIGHT/LEFT to Y Outputs
I, SIGN Inputs to SO Outputs
I, SIGN Inputs to Y Outputs, Normalize Mode
I, SIGN Inputs to Y Outputs
OE
tDIS
tSIY
tISO
tIY, tIYN
HIGH IMPEDANCE
7
32-bit Cascadable Barrel Shifter
50*
42*
tENA
Special Arithmetic Functions
Max Max
85
75
62
52
22
20
32
28
22
20
65
55
50
42
tMSY
Min
Min
LSH32- 40*
LSH32- 32
Max
Max
75
60
52
40
20
20
26
24
20
20
52
42
40
32
Min
Min
08/16/2000-LDS.32-Q
30*
20
LSH32
Max
Max
58
20
40
20
17 15
24 15
17 15
42 20
30 20
LSH32
DEVICES INCORPORATED
32-bit Cascadable Barrel Shifter
NOTES
9. AC specifications are tested with input transition times less than 3 ns, output reference levels of 1.5 V (except tDIS test), and input levels of nominally 0 to 3.0 V. Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max 2. The products described by this spec- respectively. Alternatively, a diode ification include internal circuitry de- bridge with upper and lower current signed to protect the chip from damagsources of IOH and IOL respectively, ing substrate injection currents and ac- and a balancing voltage of 1.5 V may be cumulations of static charge. Neverthe- used. Parasitic capacitance is 30 pF less, conventional precautions should minimum, and may be distributed. be observed during storage, handling, and use of these circuits in order to This device has high-speed outputs caavoid exposure to excessive electrical pable of large instantaneous current stress values. pulses and fast turn-on/turn-off times. As a result, care must be exercised in the 3. This device provides hard clamping of testing of this device. The following transient undershoot and overshoot. In- measures are recommended: put levels below ground or above VCC will be clamped beginning at -0.6 V and a. A 0.1 F ceramic capacitor should be VCC + 0.6 V. The device can withstand installed between VCC and Ground indefinite operation with inputs in the leads as close to the Device Under Test range of -0.5 V to +7.0 V. Device opera- (DUT) as possible. Similar capacitors tion will not be adversely affected, how- should be installed between device VCC ever, input current levels will be well in and the tester common, and device ground and tester common. excess of 100 mA. 4. Actual test conditions may vary from b. Ground and VCC supply planes those designated but operation is guar- must be brought directly to the DUT anteed as specified. socket or contactor fingers. 5. Supply current for a given applica- c. Input voltages should be adjusted to tion can be accurately approximated by: compensate for inductive ground and VCC noise to maintain required DUT input NCV2 F levels relative to the DUT ground pin. 4 where 10. Each parameter is shown as a minN = total number of device outputs C = capacitive load per output V = supply voltage F = clock frequency 6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate. 7. Tested with all inputs within 0.1 V of VCC or Ground, no load. 8. These parameters are guaranteed but not 100% tested. imum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time. 1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability. 11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the 200mV level from the measured steady-state output voltage with 10mA loads. The balancing voltage, VTH, is set at 3.5 V for Z-to-0 and 0-to-Z tests, and set at 0 V for Zto-1 and 1-to-Z tests. 12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
FIGURE A. OUTPUT LOADING CIRCUIT
DUT
S1 IOL CL IOH VTH
FIGURE B. THRESHOLD LEVELS
tENA OE
Z 0
1.5 V 1.5 V 1.5 V
tDIS
3.5V Vth VOL*
0.2 V
0 1
Z Z
1.5 V
VOH*
0.2 V
Z
1
0V Vth VOL* Measured VOL with IOH = -10mA and IOL = 10mA VOH* Measured VOH with IOH = -10mA and IOL = 10mA
Special Arithmetic Functions
ffs8
08/16/2000-LDS.32-Q
DEVICES INCORPORATED
ORDERING INFORMATION
7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321 7654321098765432121098765432109876543210987654321
68-pin
G H D C K E B A F L J
Y31/15 Y30/14 Y28/12 Y26/10 Y24/8 Y22/6 Y20/4 Y18/2 Y16/0 VCC SO0 SO2 SO4 SIGN F/W SI0 SI2 SI4 NORM I31
Speed
32 ns 20 ns
-55C to +125C -- MIL-STD-883 COMPLIANT
-55C to +125C -- COMMERCIAL SCREENING
0C to +70C -- COMMERCIAL SCREENING
I30 I31 SIGN SO4 SO3 SO2 SO1 SO0 NORM SI4 SI3 SI2 SI1 SI0 R/L F/W Y31/15
68-pin
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
44 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
9
8
Plastic J-Lead Chip Carrier (J2)
7
6
5
4
LSH32JC32 LSH32JC20
3
2
Top View
1 68 67 66 65 64 63 62 61 60
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
GND I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0 VCC VCC
9
Y30/14 Y29/13 Y28/12 Y27/11 Y26/10 Y25/9 Y24/8 Y23/7 Y22/6 Y21/5 Y20/4 Y19/3 Y18/2 Y17/1 Y16/0 OE MS/LS
I29 I28 I27 I26 I25 I24 I23 I22 I21 I20 I19 I18 I17 I16 I15 I14 GND
32-bit Cascadable Barrel Shifter
1
Y29/13 Y27/11 Y25/9 Y23/7 Y21/5 Y19/3 Y17/1
SO1
SO3
R/L
SI1
SI3
I30
I29
2
Special Arithmetic Functions
I27 I28
Ceramic Pin Grid Array (G1)
3
Discontinued Package
(i.e., Component Side Pinout)
I25
I26
4
Through Package
I23
I24
5
Top View
I21
I22
6
I19
I20
7
I17
I18
8
OE MS/LS
I15
I16
9
08/16/2000-LDS.32-Q
GND GND
10
I12
I14
I10
I0 I2 I4 I6 I8
LSH32
VCC
11
I13
I11
I1 I3 I5 I7 I9


▲Up To Search▲   

 
Price & Availability of LSH32

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X